Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 1): 118782, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570123

RESUMO

Outdoor air pollution in urban areas, especially particulate matter (PM), is harmful to human health. Urban trees and shrubs provide crucial ecosystem services such as air pollution mitigation by acting as natural filters. However, urban greenery comprises a particular biodiversity, and different plant species vary in their capacity to accumulate PM. Twenty-two plant species were analyzed and selected according to their leaf traits, the different fractions of PM accumulated on the leaves (large - PML, coarse - PMC, and fine - PMF) and their chemical composition. The study was conducted in four city zones: urban traffic (UT), urban background (UB), industrial (IND), and rural (RUR), comparing winter (W) and summer (S) seasons. The average PM levels in the air and accumulated on the leaves were higher in W than in S season. During both seasons, the highest PM accumulated on the leaves was recorded at the UT zone. Nine species were selected as the most suitable for accumulating PML, seven as the most efficient for accumulating PMC, and six for accumulating PMF. The leaf area and leaf roundness were correlated negatively with PM accumulation. The evergreen species L. nobilis was indicated as suitable for dealing with air pollution based on PM10 and PM2.5 values recorded in the air. Regarding the PM element and metal composition, L. nobilis, Photinia x fraseri, Olea europaea, Quercus ilex and Nerium oleander were selected as species with notable elements and metal accumulation. In summary, the study identified species with higher PM accumulation capacity and assessed the seasonal PM accumulation patterns in different city zones, providing insights into the species interactions with PM and their potential for monitoring and coping with air pollution.

2.
Sensors (Basel) ; 23(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139530

RESUMO

The development of spectral sensors (SSs) capable of retrieving spectral information have opened new opportunities to improve several environmental and agricultural practices, e.g., crop breeding, plant phenotyping, land use monitoring, and crop classification. The SSs are classified as multispectral and hyperspectral (HS) based on the number of the spectral bands resolved and sampled during data acquisition. Large-scale applications of the HS remain limited due to the cost of this type of technology and the technical difficulties in hyperspectral data processing. Low-cost portable hyperspectral cameras (PHCs) have been progressively developed; however, critical aspects associated with data acquisition and processing, such as the presence of spectral discontinuities, signal jumps, and a high level of background noise, were reported. The aim of this work was to analyze and improve the hyperspectral output of a PHC Senop HSC-2 device by developing a general use methodology. Several signal gaps were identified as falls and jumps across the spectral signatures near 513, 650, and 930 nm, while the dark current signal magnitude and variability associated with instrumental noise showed an increasing trend over time. A data correction pipeline was successfully developed and tested, leading to 99% and 74% reductions in radiance signal jumps identified at 650 and 830 nm, respectively, while the impact of noise on the acquired signal was assessed to be in the range of 10% to 15%. The developed methodology can be effectively applied to other low-cost hyperspectral cameras.

3.
Plants (Basel) ; 12(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111953

RESUMO

Recent developments in low-cost imaging hyperspectral cameras have opened up new possibilities for high-throughput phenotyping (HTP), allowing for high-resolution spectral data to be obtained in the visible and near-infrared spectral range. This study presents, for the first time, the integration of a low-cost hyperspectral camera Senop HSC-2 into an HTP platform to evaluate the drought stress resistance and physiological response of four tomato genotypes (770P, 990P, Red Setter and Torremaggiore) during two cycles of well-watered and deficit irrigation. Over 120 gigabytes of hyperspectral data were collected, and an innovative segmentation method able to reduce the hyperspectral dataset by 85.5% was developed and applied. A hyperspectral index (H-index) based on the red-edge slope was selected, and its ability to discriminate stress conditions was compared with three optical indices (OIs) obtained by the HTP platform. The analysis of variance (ANOVA) applied to the OIs and H-index revealed the better capacity of the H-index to describe the dynamic of drought stress trend compared to OIs, especially in the first stress and recovery phases. Selected OIs were instead capable of describing structural changes during plant growth. Finally, the OIs and H-index results have revealed a higher susceptibility to drought stress in 770P and 990P than Red Setter and Torremaggiore genotypes.

4.
Sensors (Basel) ; 20(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235527

RESUMO

The Arctic is an important natural laboratory that is extremely sensitive to climatic changes and its monitoring is, therefore, of great importance. Due to the environmental extremes it is often hard to deploy sensors and observations are limited to a few sparse observation points limiting the spatial and temporal coverage of the Arctic measurement. Given these constraints the possibility of deploying a rugged network of low-cost sensors remains an interesting and convenient option. The present work validates for the first time a low-cost sensor array (AIRQino) for monitoring basic meteorological parameters and atmospheric composition in the Arctic (air temperature, relative humidity, particulate matter, and CO2). AIRQino was deployed for one year in the Svalbard archipelago and its outputs compared with reference sensors. Results show good agreement with the reference meteorological parameters (air temperature (T) and relative humidity (RH)) with correlation coefficients above 0.8 and small absolute errors (≈1 °C for temperature and ≈6% for RH). Particulate matter (PM) low-cost sensors show a good linearity (r2 ≈ 0.8) and small absolute errors for both PM2.5 and PM10 (≈1 µg m-3 for PM2.5 and ≈3 µg m-3 for PM10), while overall accuracy is impacted both by the unknown composition of the local aerosol, and by high humidity conditions likely generating hygroscopic effects. CO2 exhibits a satisfying agreement with r2 around 0.70 and an absolute error of ≈23 mg m-3. Overall these results, coupled with an excellent data coverage and scarce need of maintenance make the AIRQino or similar devices integrations an interesting tool for future extended sensor networks also in the Arctic environment.

5.
Sensors (Basel) ; 18(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154366

RESUMO

A low-cost air quality station has been developed for real-time monitoring of main atmospheric pollutants. Sensors for CO, CO2, NO2, O3, VOC, PM2.5 and PM10 were integrated on an Arduino Shield compatible board. As concerns PM2.5 and PM10 sensors, the station underwent a laboratory calibration and later a field validation. Laboratory calibration has been carried out at the headquarters of CNR-IBIMET in Florence (Italy) against a TSI DustTrak reference instrument. A MATLAB procedure, implementing advanced mathematical techniques to detect possible complex non-linear relationships between sensor signals and reference data, has been developed and implemented to accomplish the laboratory calibration. Field validation has been performed across a full "heating season" (1 November 2016 to 15 April 2017) by co-locating the station at a road site in Florence where an official fixed air quality station was in operation. Both calibration and validation processes returned fine scores, in most cases better than those achieved for similar systems in the literature. During field validation, in particular, for PM2.5 and PM10 mean biases of 0.036 and 0.598 µg/m³, RMSE of 4.056 and 6.084 µg/m³, and R² of 0.909 and 0.957 were achieved, respectively. Robustness of the developed station, seamless deployed through a five and a half month outdoor campaign without registering sensor failures or drifts, is a further key point.

6.
Proc Natl Acad Sci U S A ; 113(1): 40-5, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699476

RESUMO

Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y(-1), ∼ 25% of global emissions from extratropical wetlands, or ∼ 6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.


Assuntos
Temperatura Baixa , Metano/análise , Tundra , Regiões Árticas , Monitoramento Ambiental , Modelos Teóricos , Estações do Ano , Solo , Áreas Alagadas
7.
Environ Monit Assess ; 186(4): 2053-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24218113

RESUMO

Aircraft measurements were used to estimate the CO2 emission rates of the city of Rome, assessed against high-resolution inventorial data. Three experimental flights were made, composed of vertical soundings to measure Planetary Boundary Layer (PBL) properties, and circular horizontal transects at various altitudes around the city area. City level emissions and associated uncertainties were computed by means of mass budgeting techniques, obtaining a positive net CO2 flux of 14.7 ± 4.5, 2.5 ± 1.2, and 10.3 ± 1.2 µmol m(-2) s(-1) for the three flights. Inventorial CO2 fluxes at the time of flights were computed by means of spatial and temporal disaggregation of the gross emission inventory, at 10.9 ± 2.5, 9.6 ± 1.3, and 17.4 ± 9.6 µmol m(-2) s(-1). The largest differences between the two dataset are associated with a greater variability of wind speed and direction in the boundary layer during measurements. Uncertainty partitioned into components related to horizontal boundary flows and top surface flow, revealed that the latter dominates total uncertainty in the presence of a wide variability of CO2 concentration in the free troposphere (up to 7 ppm), while it is a minor term with uniform tropospheric concentrations in the study area (within 2 ppm). Overall, we demonstrate how small aircraft may provide city level emission measurements that may integrate and validate emission inventories. Optimal atmospheric conditions and measurement strategies for the deployment of aircraft experimental flights are finally discussed.


Assuntos
Poluentes Atmosféricos/análise , Aeronaves/estatística & dados numéricos , Atmosfera/química , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Poluição do Ar/estatística & dados numéricos , Cidade de Roma , Incerteza , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA